
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c© 2018 Society for Industrial and Applied Mathematics
Vol. 78, No. 5, pp. 2626–2647

STABILITY OF INVERSE TRANSPORT EQUATION IN DIFFUSION
SCALING AND FOKKER–PLANCK LIMIT∗

KE CHEN† , QIN LI‡ , AND LI WANG§

Abstract. We consider the radiative transfer equation (RTE) with two scalings in this paper:
one is the diffusive scaling whose macroscopic limit is a diffusion equation, and the other is a highly
forward peaked scaling, wherein the scattering term is approximated by a Fokker–Planck operator
as a limit. In the inverse setting, we are concerned with reconstructing the scattering and absorption
coefficients using boundary measurements. As the measurement is often polluted by errors, both
experimental and computational, an important question is to quantify how the error is amplified or
suppressed in the process of reconstruction. Since the solution to the forward RTE behaves differ-
ently in different regimes, it is expected that stability of the inverse problem will vary accordingly.
Particularly, we adopted the linearized approach and showed, in the former case, that the stability
degrades when the limit is taken, following a similar approach as in [K. Chen, Q. Li and L. Wang,
Inverse Problems, 34 (2018), 025004]. In the latter case, we showed that a full recovery of the
scattering coefficient is less possible in the limit.
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1. Introduction. The radiative transfer equation (RTE) describes the dynamics
of photon particles propagating in scattering and absorbing media [13]. A typical form
reads as

∂tf + v · ∇xf =

∫
Sd−1

k(x, v, v′)f(t, x, v′)dv′ − σ(x, v)f(t, x, v) ,(1.1)

equipped with initial condition

f(0, x, v) = f I(x, v)(1.2)

and boundary condition

f |Γ− = φ(t, x, v) .(1.3)

Here f(t, x, v) is the distribution of particles at location x ∈ Ω ⊂ Rd moving with ve-
locity v ∈ Sd−1. Since photons travel with a fixed speed, the velocity v is normalized
to |v| = 1. k(x, v, v′) is the scattering cross section, representing the probability of
particles that move in direction v′ changing to direction v. σ is the total scattering
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STABILITY OF INVERSE TRANSPORT EQUATION 2627

coefficient that consists of the amount of photon particles being scattering and ab-
sorbed by the material. k and σ constitute the main optical property of the material.

The boundary condition (1.3) is a common choice for RTE, and Γ− represents
the “incoming” portion of the boundary (∂Ω× Sd−1), i.e.,

Γ− = {(x, v) : x ∈ ∂Ω , v ∈ Sd−1 , v · nx < 0} ,(1.4)

where nx is the unit outer normal direction of the boundary. Similarly, one can define
the “outgoing” portion of the boundary by

Γ+ = {(x, v) : x ∈ ∂Ω , v ∈ Sd−1 , v · nx > 0} .(1.5)

The well-posedness of the forward problem (1.1)–(1.3) is summarized in [18].
RTE (1.1) is often incorporated with different scales that lead it to different

equations. One typical scaling is the diffusive scaling, under which the RTE is well
approximated by a diffusion equation

∂tρ = C∇x
(

1

σs
∇xρ

)
+ σaρ ,

where ρ(t, x) =
∫
Sd−1 fdv, and σs, σa (related to k and σ) will be defined later. C

is a generic constant depending on the dimension of the problem. This scaling is
encountered in the long time limit with a strong scattering effect. Another is the
Fokker–Planck scaling which emphasizes the highly forward peaked scattering. In
this case, (1.1) reduces to

∂tf + v · ∇xf = LFPf ,

where

LFP =

[
∂

∂v3
(1− v2

3)
∂

∂v3
+

1

1− v2
3

∂2

∂ψ2

]
,

and v = (
√

1− v2
3 cosψ,

√
1− v2

3 sinψ, v3). In both scenarios, theory exists regarding
the derivation, validity, and asymptotic error in the approximation, and the reader
can refer to [23, 11] for the former case and [24, 28] for the latter.

We study the two limiting procedures of this problem in the inverse setting, with
special attention paid to the stability of the reconstruction. Unlike the forward setting
wherein the optical properties k and σ are given, and one attempts to solve f(t, x, v)
for a specific boundary condition (1.3), in the inverse problem, one tries to recover the
unknown optical properties from boundary measurements of f(t, x, v). To be more
precise, we define the albedo operator as a mapping from the boundary condition
φ(t, x, v) to the outgoing data f |Γ+

:

A(k, σ) : φ 7→ f |Γ+ ;

then by adjusting the incoming data φ, and measuring the corresponding outgoing
data f |Γ+ , one gains a full knowledge of A, which can be used to determine k and σ.

The inverse RTE problem benefits a broad application in optical tomography,
atmospheric science, and aerospace engineering. Optical tomography, with its major
application in medical imaging, utilizes scattered light as a probe of structural varia-
tions in the optical properties of the tissue. Specifically, a narrow collimated beam of
low energy visible or near infrared light is sent into biological tissues, then collected by
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2628 KE CHEN, QIN LI, AND LI WANG

an array of detectors after it propagates through the media. The measurements col-
lected are used to recover the optical properties of the media. In atmospheric science,
or remote sensing, satellites cumulate hyperspectral light reflected from the earth,
which is used to infer mineral or plant distribution on the ground. In aerospace engi-
neering, pictures taken by spacecraft in the universe (Galileo’s pictures from Jupiter,
or Cassini’s pictures from Saturn, for example) are sent back to Earth for analyzing
mineral/gas distribution on different planets. In all applications, the forward solver for
light propagation is described by the RTE. One measures the reflected or propagated
light intensity to reconstruct the optical properties, with which tissue/ground/gas
components are inferred.

On the analytical side, there has been a vast literature on the well-posedness
and stability of the inverse problem. In a pioneering paper [17], the authors showed
that both k and σ can be uniquely determined by the incoming-to-outgoing map A,
assuming that σ is v-independent. With v dependence, the uniqueness up to the
gauge-invarience was shown in [33]. The analysis is done through performing the
singular decomposition: one separates the collected f |Γ+ data according to the singu-
larities, and different parts are in charge of recovering different coefficients. Another
approach is to linearize the equation before applying inverse Born series, followed
by showing the convergence of the series [26]. The results on the stability of the
“inverse” dates back to [35] and was made systematic in [7, 8, 9]. Many papers
concern the time-dependent case and the associated stability analysis has also been
conducted [22, 31, 16, 6, 10]; see also [5] for a review.

On the numerical side, special care is needed to address the ill-posedness of the
problems, both inherited from the continuous counterpart and due to the incomplete
corrupted data. Indeed, to uniquely determine k and σ, one needs a full knowledge of
A, which is impractical in real applications, and measurement error can easily propa-
gate and get exaggerated. Typically Tikhonov type regularization is used to balance
the pollution and the error tolerance, and the type of regularization embeds some
prior knowledge. See [1] using the standard L2, [34] using total variation regulariza-
tion for the least variance, [29] summarizing H1 regularization for some regularity,
and L1 regularization for sparsity. See also Tikhonov type regularization used on
each element in the inverse Born series [25, 26]. Besides the ill-posedness, the size
of the problem also brings extra difficulties, and Jacobian type techniques [32] are
introduced to advance the computation.

In the presence of different scales, however, the above mentioned theory or algo-
rithms cannot be directly applied since the inverse problem may completely change
its type. One example is the diffusive regime; while the inverse RTE with sufficient
variation in measurement is shown to be well-posed, its diffusion limit is the Calderón
type problem which is well acknowledged to be ill-posed [19, 20]. Our goal in this pa-
per is to provide a rigorous connection between different scalings in the inverse setting
and show how stability varies with the scaling parameter. For the diffusive scaling,
the connection is observed in [30, 2, 3] and addressed in [4, 14]. A similar problem
on recovering the doping profile in the Boltzmann–Poisson system is presented [15],
wherein numerical simulations also imply this relation. In the Fokker–Planck regime,
the limit was briefly mentioned in [5] but the full discussion was rarely seen in the
literature. In this paper, we restrict our attention to the linearized version of the
inverse problem and mainly contribute in the following two aspects:

(1) extend our previous analysis with diffusive scaling for steady problems [14]
to time-dependent problems, and show that the stability degrades in the
diffusion limit;
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STABILITY OF INVERSE TRANSPORT EQUATION 2629

(2) examine the well-posedness and stability in the Fokker–Planck scaling which
has never been studied in detail before.

In the former case, although the conclusion here looks similar to that in the steady
state scenario [14], the extra dependence on time calls for variations in technical
details, as evident from the construction of adjoint problem (e.g., (2.13)), possible
presence of initial layer (e.g., Remark 2.2), and property of the limiting solution (e.g.,
proof of Theorem 2.5). In the latter case, we hereby set up the inverse problem in
detail and analyze the stability rigorously for the first time.

The rest of paper is organized as follows. Section 2 is devoted to the diffusion
regime and section 3 is devoted to the forward peaked regime, in which the diffusion
equation and the Fokker–Planck equation are obtained as asymptotic limit, respec-
tively. In both cases, we utilize the linearization approach, study the well-posedness,
and examine the change of stability while passing the limit.

2. Diffusion regime. In this section, we first briefly recapitulate the proper-
ties of RTE and its diffusion limit, and then examine the well-posedness in the in-
verse setting. For simplicity, we assume that the optical properties only have spatial
dependence, and we rewrite (1.1) as

∂tf + v · ∇xf =
σs(x)

|Sd−1|

∫
Sd−1

(f(t, x, v′)− f(t, x, v))dv′ − σa(x)f(t, x, v) ,(2.1)

where σs is termed the scattering coefficient, and

σa(x) = σ(x)− σs(x)

is the absorption coefficient. Here |Sd−1| is the area of unit sphere in dimension d−1.
The diffusion regime is achieved in the long time limit and when the scattering

is much stronger than the absorption. Indeed, we introduce a small parameter—
Knudsen number Kn—and rescale time and space as

t→ t

Kn2 , x→ x

Kn
.

We also let σa → Knσa so that the absorption effect is negligible compared to the
scattering effect; then the RTE is rewritten as

Kn∂tf + v · ∇xf = 1
KnσsLf − Knσaf in (0, T )× Ω× Sn−1 ,

f(0, x, v) = f I(x, v) ,

f |Γ−(t, x, v) = φ(t, x, v) .

(2.2)

Here the collision operator L is an abbreviation of

Lf(t, x, v) =
1

|Sd−1|

∫
Sd−1

(f(t, x, v′)− f(t, x, v))dv′ = 〈f〉v − f .(2.3)

Note that the notation 〈·〉v means taking the average in the velocity domain. There
are two key features of the collision operator:

• Mass conservation:
∫
Lfdv = 0.

• One-dimensional null space: By setting Lf = 0, one gets f = 1
|Sd−1|

∫
Sd−1fdv,

meaning that f is a constant in velocity domain. We denote it as NullL =
span{ρ(t, x)}, the collection of functions that depend on t and x only.
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2630 KE CHEN, QIN LI, AND LI WANG

2.1. Diffusion limit. When Kn� 1, the equation falls into the diffusion regime,
and the RTE is asymptotically equivalent to a diffusion equation as Kn→ 0.

Theorem 2.1 (see [23, 27, 12]). Suppose f solves (2.2) with initial data
f(0, x, v) = f I(x) and boundary data f |Γ− = φ(t, x), both of which are independent
of velocity v. Then as Kn → 0, f(t, x, v) converges to ρ(t, x), which solves the heat
equation: 

∂tρ− C∇x ·
(

1
σs
∇xρ

)
+ σaρ = 0 ,

ρ(0, x) = f I(x) ,

ρ|∂Ω = φ(t, x) .

(2.4)

Here C is a time-dependent constant.

Here we omit the rigorous proof but only provide the following asymptotic analysis
as it is the major building block. In the zero limit of Kn, the distribution converges to
the local equilibrium, and by applying the standard asymptotic expansion technique,
we write

fin = f0 + Knf1 + Kn2f2 + · · · .(2.5)

Insert the expansion in (2.2) and equate like powers of Kn:
O(1) Lf0 = 0. This immediately indicates that f0 ∈ NullL. With the form given

in (2.3), NullL consists of functions that are constants in the v domain, and
thus f0(t, x, v) = ρ(t, x).

O(Kn) v · ∇xf0 = σsLf1. This indicates that f1 = L−1 v·∇xf0

σs
. Notice that L is

invertible on NullL⊥, and consider the form of L in (2.3); then NullL⊥ = {f :∫
fdv = 0} and v·∇xf0

σs
∈ NullL⊥, and therefore f1 = L−1 v·∇xf0

σs
= −v·∇xf0

σs
.

O(Kn2) ∂tf0+v ·∇xf1 = σsLf2−σaf0. Here we integrate the equation with respect to
v. The second corrector f2 will vanish and the left-hand side (LHS) becomes

∂tρ+
1

|Sd−1|

∫
Sd−1

v · ∇x
(
− v

σs
· ∇xρ

)
dv = −σaρ

⇒ ∂tρ− C∇x ·
(

1

σs
∇xρ

)
= −σaρ .(2.6)

Integrating
∫
v · vdv out, we obtain the diffusion limit and conclude the theorem.

The constant C depends on the dimension of the velocity space.

Remark 2.2. We comment that the initial and boundary conditions in the above
theorem are rather strict—they both are independent of v—so that no initial or bound-
ary layers will be generated and ρ takes the same initial and boundary conditions as f .
For more general cases, however, one needs to introduce the initial and boundary lay-
ers to damp out the nonhomogeneities. More specifically, we write

f(t, x, v)=fil(t, x, v) + fbl(t, x, v) + fint(t, x, v) ,(2.7)

where fint(t, x, v) stands for the interior solution (i.e., x is away from the boundary
and t is away from 0), and we write

fint(t, x, v) = θ(t, x)− KnL−1(v)∂xθ(t, x) +O(Kn2) ,

with θ satisfying the diffusion equation (2.4) (but with different initial and boundary
conditions than in (2.4)). fil is the initial layer and is governed by

∂τfil − Lfil = 0 ,(2.8)
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where τ = t/Kn2 is the rescaled time. With appropriate initial data, fil damps to 0

exponentially fast in τ and thus fil ∼ e−t/Kn
2 ∼ 0 for finite t with Kn→ 0. fbl is the

boundary layer. At each point on the boundary, x0 ∈ ∂Ω, fbl satisfies

v∂zfbl + Lfbl = 0 ,(2.9)

where z is the rescaled spatial coordinate around x0: z = − (x−x0)·nx
Kn with nx being the

normal direction pointing out of Ω at x0. It has been shown that fbl exponentially
decays to a constant in z. This constant is termed the extrapolation length and is uni-
quely determined by the boundary data around x0. We denote it φ(t, x0). This means
that for x adjacent to x0, in the zero limit of Kn, |fbl − φ(t, x0)| ∼ e−|x−x0|/Kn ∼ 0.
We typically subtract this constant from fbl and set it as the Dirichlet boundary
condition for θ, and thus fbl ∼ 0 everywhere.

2.2. Recover absorption coefficient σa. In this section we assume that the
scattering coefficient is known and aim to recover the absorption coefficient. Without
loss of generality, we let σs ≡ 1.

2.2.1. Inverse problem setup. We first rewrite (2.2) into
Kn∂tf + v · ∇xf = 1

KnLf − Knσaf in (0, T )× Ω× Sd−1 ,

f(0, x, v) = 0 on {t = 0} × Ω× Sd−1 ,

f(t, x, v) = φ(t, x, v) on (0, T )× Γ− .

(2.10)

The solution to the above equation, denoted by f(t, x, v;φ), models the number den-
sity of photons with certain inflow φ. In experiment, time-dependent velocity-averaged
data m(t, x) :=

∫
Sn−1 v · n(x)f(t, x, v)|Γ+

dv is collected on the out-flow boundary Γ+.
Therefore, we can define the albedo operator as

A(σa) : φ(t, x, v)→ m(t, x) =

∫
Sn−1

v · n(x)f(t, x, v)|Γ+
dv .

Notice that A nonlinearly depends on σa via the solution f(t, x, v;φ). In an effort
to study the property of A, we first derive a linearized version of it following the
procedure outlined in [29]. For the angularly averaged measurement we considered
here, see also [21] for the reconstruction of a stationary transport equation.

Suppose a priori information about the absorption coefficient is known in the
sense that σa can be considered as a small perturbation around a background state
σa0(x), i.e.,

σa(x) = σa0(x) + σ̃a(x) with |σ̃a| � |σa| , a.e. ;

then a linearized problem with background state σa0 and same initial and boundary
data can be defined as

Kn∂tf0 + v · ∇xf0 = 1
KnLf0 − Knσa0f0 in (0, T )× Ω× Sd−1 ,

f0(0, x, v) = 0 on {t = 0} × Ω× Sd−1 ,

f0(t, x, v) = φ(t, x, v) on (0, T )× Γ− .

(2.11)

Comparing (2.10) and (2.11), we define the residue f̃ = f − f0; then it solves, to the
leading order,

Kn∂tf̃ + v · ∇xf̃ = 1
KnLf̃ − Knσa0f̃ − Knσ̃af0 in (0, T )× Ω× Sn−1 ,

f̃(0, x, v) = 0 on {t = 0} × Ω× Sn−1 ,

f̃(t, x, v) = 0 on (0, T )× Γ− ,

(2.12)D
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which is obtained by subtracting (2.11) from (2.10) with the higher order term σ̃af̃
omitted. Notice here that both the linearized solution f0 and the residue f̃ are
implicitly dependent on the incoming data φ. We then introduced an adjoint problem
of (2.11) and assign a Dirac delta function δ(τ, y) at the boundary (0, T )× Γ+:

−Kn∂tg − v · ∇xg = 1
KnLg − Knσa0g in (0, T )× Ω× Sd−1 ,

g(T, x, v) = 0 on {t = T} × Ω× Sd−1 ,

g(t, x, v) = δ(τ, y) on (0, T )× Γ+ .

(2.13)

The solution is denoted by g(t, x, v; τ, y). Multiplying (2.12) with g, (2.13) with f̃ ,
integrating over (0, T )× Ω× Sn−1, and then subtracting them, we get

∫
Γ+(y)

f̃(τ, y, v)n(y) · vdv = −Kn
∫

Ω

σ̃a(x)

∫
Sn−1

∫ T

0

f0(t, x, v;φ)g(t, x, v; τ, y)dtdvdx ,

(2.14)

where we have used the self-adjoint property of L and the divergence theorem∫
Sd−1×Ω

∇x · (vf̃g)dxdv =
∫
Sd−1×∂Ω

n̂ · vf̃g dΓ. We denote the LHS of (2.14) by

b(τ, y, φ); then according to the definition of f̃ , it is simply

b(τ, y, φ) :=

∫
Γ+(y)

f(τ, y, v)n(y) · vdv −
∫

Γ+(y)

f0(τ, y, v)n(y) · vdv ,(2.15)

with the first term being the measurement from experiments and the second term
computed from (2.11). This term therefore is known ahead of time. The RHS of
(2.14) defines a linear mapping of σ̃a. Let us denote

γKn(x; τ, y, φ) := −Kn
∫
Sn−1

∫ T

0

f0(t, x, v;φ)g(t, x, v; τ, y)dtdv;(2.16)

then (2.14) defines a family of linear mapping from γKn to the data on the LHS,
parametrized by (τ, y, φ):∫

Ω

σ̃a(x)γKn(x; τ, y, φ)dx = b(τ, y, φ) .(2.17)

Therefore, (2.17) defines a linearized albedo operator, from which σ̃a can be obtained
via solving a system of linear equations.

Remark 2.3. Equation (2.17) is a first type Fredholm operator, and it holds true
for all parameter choices of τ , y, and φ. The study on the well-posedness simply
relies on the space spanned by {γKn}. Suppose we look for σ̃a ∈ Lp(dx); then the
uniqueness is guaranteed if {γKn} spans Lq space (with 1

p + 1
q = 1). There have been

many studies on the topic and this is not the main goal of the current paper. The
well-posedness amounts to analyze the “conditioning” of γKn. It is closely related to
studying its “singular values,” as will be explained in better detail below.

2.2.2. Ill-conditioning in the diffusion limit. Given the linearized albedo op-
erator defined in (2.17), studying the stability of recovering σ̃a boils down to examining
the property of the Fredholm operator of the first kind defined there. In this section,
we intend to explore its conditioning with respect to Kn. More precisely, given a fam-
ily of input-measurement pairs (φ(t, x, v), m(τ, y, φ)), where (t, x, v) ∈ (0, T )×Γ− and
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STABILITY OF INVERSE TRANSPORT EQUATION 2633

m(τ, y, φ) =
∫
Sn−1 f(τ, y, v)n(y) · vdv, we can explicitly compute γKn(x) and b(τ, y, φ)

defined in (2.16) and (2.15) and study their dependence on Kn so as to get a sensitivity
in recovering σ̃a with respect to Kn.

In this regard, we first introduce a distinguishability coefficient to quantify the
perturbation of σ̃a when a δ-error is allowed for b(τ, y, φ).

Definition 2.4. Consider linear equations (2.17) and γKn defined in (2.16) and
b(τ, y, φ) defined in (2.15); we define the distinguishability coefficient as

κa := sup
σ̂a∈Γδ

‖σ̂a − σ̃a‖L∞(dx)

‖σ̃a‖L∞(dx)
,(2.18)

where
Γδ = {σ̂a : sup

∀‖φ‖L∞(Γ−)≤1,

∀y∈∂Ω, τ∈[0,T ]

|〈γKn , σ̂a〉L2(dx) − b(τ, y, φ)| ≤ δ} ,

and σ̃a is the exact solution to (2.17).

Here Γδ consists of all possible solutions to (2.17) within δ-tolerance, and the dis-
tinguishability coefficient κ quantifies supremum of relative error over Γδ. Therefore,
in practice small κ is desired. However, this is not the case when Kn is small, as will
be shown in the following theorem: small κ leads to very bad distinguishability.

Theorem 2.5. For a family of linear equations defined in (2.17) and an error
tolerance δ > 0 on the measurement, the distinguishability coefficient satisfies

κa ≥ O
(
δ

Kn

)
when Kn� 1 .

Proof. Let c(x) be an arbitrary function that vanishes in the boundary layer and
satisfies ∣∣∣∣∫

Ω

γKn(x)c(x)dx

∣∣∣∣ ≤ δ ,(2.19)

where γKn is defined in (2.16). Choose σ̂a = c(x) + σ̃a, then σ̂a ∈ Γδ. When Kn� 1,
from Theorem 2.1, f0(t, x, v) can be decomposed into two parts,

f0(t, x, v) = fint(t, x, v) + fbl(t, x, v) ,

where fbl(t, x, v) encodes the boundary layer supported near the boundary withO(Kn)
width and fint is the interior solution, and it approaches its diffusion limit ρf (t, x)
which satisfies (2.4) with zero initial data and suitable boundary condition. Specifi-
cally, fint(t, x, v) can be expanded as

fint(t, x, v) = ρf (t, x)− Knv · ∇xρf (t, x) +O(Kn2) ,(2.20)

where ρf solves 
∂tρf = C∆xρf − σaρf in (0, T )× Ω ,

ρf (0, x) = 0 on {t = 0} × Ω ,

ρf (t, x) = ηφ(t, x) on (0, T )× ∂Ω .

(2.21)

Here the boundary value ηφ(x) is computed from φ(t, x, v) through the boundary layer
analysis. (Details are provided in Remark 2.2.)

D
ow

nl
oa

de
d 

08
/1

5/
19

 to
 1

28
.1

04
.4

6.
20

6.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2634 KE CHEN, QIN LI, AND LI WANG

Likewise, g admits the same decomposition that separates the interior part from
the boundary part,

g0(t, x, v) = gint(t, x, v) + gbl(t, x, v) ,

and gint(t, x, v) has the expansion

gint(t, x, v) = ρg(t, x)− Knv · ∇xρg(t, x) +O(Kn2)

with ρg satisfying 
−∂tρg = C∆xρg − σaρg in (0, T )× Ω ,

ρg(T, x) = 0 on {t = T} × Ω ,

ρg(t, x) = ηδ(t, x) on (0, T )× ∂Ω ,

(2.22)

where ηδ(t, x) is again computed from the boundary layer equation (2.9) with incoming
data specified by δ(τ, y), as presented in Remark 2.2.

We plug the expansion of f0 and g into the definition of γKn; then in the interior
away from the layer,

(γKn)int := −Kn
∫
Sn−1

∫ T

0

f0(t, x, v;φ)g(t, x, v; τ, y)dtdv ,

= −Kn
∫ T

0

ρf (t, x)ρg(t, x)dt+O(Kn3) .

Here in the derivation, the O(Kn2) terms∫ T

0

ρf

∫ n−1

S
v · ∇xρgdvdt+

∫ T

0

ρg

∫ n−1

S
v · ∇xρfdvdt

disappear since the integrands are odd functions. Simplification is not available inside
the boundary layer. Then inserting this γKn back into (2.19) we have∫

Ω

c(x)γKn(x)dx =− Kn

∫
int

c(x)

∫ T

0

ρf (t, x)ρg(t, x)dtdx

+

∫
bl

c(x)

∫ T

0

γKn(x)dtdx+O(Kn3) .

Since c(x) vanishes inside the layer, we have c(x) ∼ O
(
δ
Kn

)
. Recalling the definition

of κa in (2.18) and the fact that ‖σ̃a‖L∞ ∼ O(1), the result readily follows.

We note that ρf and ρg are solutions to the heat equation and have no dependence
on Kn. In the time-independent case [14], we show further that the product of ρf and
ρg, the solutions to two elliptic equations, are of low rank, so that we get a better
estimate on κa (O( δ

Kn2 ) instead of O( δ
Kn )). However, this is not true for the time-

dependent case: we cannot prove the term
∫ T

0
ρfρgdt being low rank in L2, and thus

it is hard to obtain O(δ/Kn2).

Remark 2.6. We would like to point out that the definition of distinguishability
coefficient (2.18) is a “continuous” analogue of the condition number in the discrete
setting. In fact, if we discretize (2.17) in x and write it in a matrix form, we get

A · σ̃disa = b ,
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STABILITY OF INVERSE TRANSPORT EQUATION 2635

where each row of A is γKn evaluated at all discrete points with one particular τ , y,
and φ selected:

Aij = γKn(xj ; τi, yi, φi) and bi = b(τi, yi, φi) .

Perform the singular value decomposition of A

A = U · Σ · VT =
N∑
i=1

λiuiv
T
i , λ1 ≥ λ2 ≥ · · · ≥ λN ,

with λi being the singular values and ui and vi the column vectors; then

σ̃disa = V · Σ−1 · UT b .

Similarly, a variation of σ̃disa , denoted as σdisa , satisfies

σdisa = V · Σ−1 · UT (b + bδ) .

Then the equivalent definition of κ here is

κA = max
bδ:‖bδ‖∞<δ

‖
∑

1
λi
viu

T
i b

δ‖∞
‖
∑

1
λi
viuTi b‖∞

.

Assume b is a fixed vector, and let the denominator be O(1); then the biggest number
is achieved if bδ is aligned with uN so that κA = δ

λN
. Or κA may implicitly depend

on b as well, and if the definition is replaced by

κA = max
bδ,b:‖bδ‖∞<δ‖b‖∞

‖
∑

1
λi
viu

T
i b

δ‖∞
‖
∑

1
λi
viuTi b‖∞

,

then the maximum is achieved by the condition number, κA = δλ1

λN
, by aligning b with

u1 and bδ with uN .

2.3. Recover scattering coefficient σs. To recover σs we follow the same
route: first set up the inverse problem through a linearization and show that the
stability degrades as Kn→ 0. Without loss of generality, we set σa = 1.

2.3.1. Inverse problem setup. To set up the inverse problem we first recall
the forward problem:

Kn∂tf + v · ∇xf = 1
KnσsLf − Knf in (0, T )× Ω× Sn−1 ,

f(0, x, v) = 0 on {t = 0} × Ω× Sn−1 ,

f(t, x, v) = φ(t, x, v) on (0, T )× Γ− ;

(2.23)

then a similar linearization procedure can be conducted as follows. Assume that σs(x)
can be written as a superposition of a known background σs0(x) and a perturbation
σ̃s(x) from the background, i.e.,

σs(x) = σ̃s(x) + σs0(x) with |σ̃s| � |σs| , a.e. ;

then the background solution f0 satisfies the equation
Kn∂tf0 + v · ∇xf0 = 1

Knσs0Lf0 − Knf0 in (0, T )× Ω× Sn−1 ,

f0(0, x, v) = 0 on {t = 0} × Ω× Sn−1 ,

f0(t, x, v) = φ(t, x, v) on (0, T )× Γ− .

(2.24)D
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2636 KE CHEN, QIN LI, AND LI WANG

The residue f̃ := f − f0 then solves
Kn∂tf̃ + v · ∇xf̃ = 1

Knσs0Lf̃ −
1
Kn σ̃sLf0 − Knf̃ in (0, T )× Ω× Sn−1 ,

f̃(0, x, v) = 0 on {t = 0} × Ω× Sn−1 ,

f̃(t, x, v) = 0 on (0, T )× Γ− .

(2.25)

Write the adjoint problem of (2.24) as
−Kn∂tg − v · ∇xg = 1

Knσs0Lg − Kng in (0, T )× Ω× Sn−1 ,

g(T, x, v) = 0 on {t = T} × Ω× Sn−1 ,

g(t, x, v) = δ(τ, y) on (0, T )× Γ+ ,

(2.26)

then multiply it with f̃ and subtract the product of (2.25) with g, and integrate over
(0, T )× Ω× Sn−1; we get

∫
Γ+(y)

f̃(τ, y, v)n(y) · vdv =
1

Kn

∫
Ω

σ̃s(x)

∫
Sn−1

∫ T

0

g(t, x, v; τ, y)Lf0(t, x, v;φ)dtdvdx .

(2.27)

Consequently, it prompts a linear equation for σ̃a,∫
Ω

σ̃s(x)γKn(x; τ, y, φ)dx = b(τ, y, φ) ,(2.28)

where

γKn(x; τ, y, φ) :=
1

Kn

∫
Sn−1

∫ T

0

g(t, x, v; τ, y)Lf0(t, x, v;φ)dtdv

=
1

Kn

∫ T

0

〈g〉v 〈f〉v − 〈gf〉v dt,(2.29)

and

b(τ, y, φ) :=

∫
Γ+(y)

(f(τ, y, v)− f0(τ, y, v))n(y) · vdv .

Here 〈f〉v := 1
|Sd−1|

∫
Sn−1 f(t, x, v)dv. Again b(τ, y, φ) is the data at our disposal—the

difference between the measured data and computed data—and we end up with a
Fredholm operator of the first kind with kernel γKn(x). We study in the next section
the ill-conditioning for this family of linear equations in the diffusion regime.

Remark 2.7. In deriving (2.25), we have assumed that 1
Kn |σ̃sf̃ | � 1 so that it can

be omitted, which restricts the magnitude of the allowable perturbation. We leave
the more general perturbation and fully nonlinear inverse problem to the future work.

2.3.2. Ill-conditioning in the diffusion limit. Similar to the previous case,
when Kn decreases, the transport equation approaches a diffusion equation and thus
recovering the scattering coefficient σs is less stable. More precisely, we have the
following theorem.

Theorem 2.8. For a family of linear equations defined in (2.28) and an error
tolerance δ > 0 on the measurement, define the distinguishability coefficient as

κs := sup
σ̂s∈Γδ

‖σ̂s − σ̃s‖L∞(dx)

‖σ̃s‖L∞(dx)
,(2.30)
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STABILITY OF INVERSE TRANSPORT EQUATION 2637

where
Γδ = {σ̂s : sup

∀‖φ‖L∞(Γ−)≤1,

∀y∈∂Ω, τ∈[0,T ]

|〈γKn , σs〉L2(dx) − b(τ, y, φ)| ≤ δ} ,

and σ̃s is the exact solution to (2.28). Then we have

κs ≥ O
(
δ

Kn

)
when Kn� 1 .

Proof. The proof again follows a boundary-interior decomposition and asymptotic
expansion. First write g and f0 as

f0 = fbl + fint, g = gbl + gint ,

where fbl and gbl are the boundary layer part, and fint and gint are the interior part
that admits the following expansion:

fint = ρf − Kn
v · ∇xρf
σs0

+ Kn2f2 ,

gint = ρg + Kn
v · ∇xρg
σs0

+ Kn2g2 .

(2.31)

Here ρf and ρg satisfy the diffusion equations:

∂tρf + ρf − C∇x
(

1

σs0
∇xρf

)
= 0 , ∂tρg − ρg + C∇x

(
1

σs0
∇xρg

)
= 0

with suitable initial data and boundary condition.
Now decompose γKn also into a layer and interior parts, i.e., γKn(x) = (γKn(x))bl +

(γKn(x))int, where (γKn(x))int is supported on the interior domain and (γKn(x))bl is
on the boundary layer. Then for the interior part, according to the definition (2.29),
using (2.31), we have

(γKn)int =
1

Kn

∫ T

0

(〈fint〉v 〈gint〉v − 〈fintgint〉v) dt

=
1

Kn

∫ T

0

(
ρf + Kn2 〈f2〉v

) (
ρg + Kn2 〈g〉v

)
−
〈(

ρf −
Kn

σs0
v · ∇xρf + Kn2f2

)(
ρg +

Kn

σs0
v · ∇xρg + Kn2g2

)〉
v

dt

=
Kn

σ2
s0

∫ T

0

〈(v · ∇xρf )(v · ∇xρg)〉v dt+O(Kn2)

=
CKn

σ2
s0

∫ T

0

∇xρf · ∇xρgdt+O(Kn2) ,(2.32)

where C again depends on the dimension of the velocity space. Here in the third
equality, the terms 〈Knσs (v · ∇xρf )ρg〉v and 〈Knσs (v · ∇xρg)ρf 〉v vanish as the integrands
are odd.

Now choose c(x) such that it vanishes inside the boundary layer and has

|〈γKn, c〉L2(dx)| ≤ δ ,
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2638 KE CHEN, QIN LI, AND LI WANG

then σ̂s constructed as σ̂s(x) = c(x) + σ̃s(x) ∈ Γδ. Computing

〈γKn, c〉L2(dx) =〈(γKn)int, cint〉L2(dx) =

〈
−CKn
σ2
s0

∫ T

0

∇xρf · ∇xρgdt, cint

〉
L2(dx)

+O(Kn2) ,

we see that

c(x) ∼ O
(
δ

Kn

)
.

Again, from the definition of κs and the fact that ‖σ̃s‖L∞ ∼ O(1), we get κs ≥
O
(
δ
Kn

)
.

3. Highly forward peaked regime. In this section, we consider the anisotropic
scattering and study the well-/ill-posedness of the inverse RTE in the highly forward
peaked regime, in which the time-dependent RTE is asymptotically equivalent to the
Fokker–Planck equation. For simplicity, we study the critical case with zero absorption
and x-independent scattering. The RTE reads

∂tf(t, x, v) + v · ∇xf(t, x, v) = Lf(t, x, v) ,

f(0, x, v) = f I(x, v) on Ω× Sd−1 ,

f(t, x, v) = φ(t, x, v) on (0, T )× Γ− ,

(3.1)

where the collision operator takes the form

Lf(t, x, v) =
1

ε2

∫
Sd−1

σ

(
1− v · v′

ε

)
(f(t, x, v′)− f(t, x, v))dv′ .(3.2)

Without loss of generality, we assume that σ integrates to one, i.e.,

1

ε

∫
Sd−1

σ

(
1− v · v′

ε

)
dv′ = 1 .(3.3)

Considering v′ is the incident direction and v is the scattering direction, then
the small parameter ε reinforces “small-angle” scattering—the kernel is peaked in the
forward direction of flight; it also plays a role of mean free path, which accounts for
the strong scattering effect. Here v ∈ Sd−1 is a unit vector denoting the direction of
flight. Hereafter, we will focus on dimension d = 3.

The existence of such a regime was long exposed to the area [28, 24] but has
received little attention in the inverse problem setting. It is not quite known how
stabilities change according to ε despite some conjectures [5]. We address this issue in
this section. We will first formally derive the Fokker–Planck limit in section 3.1 and
set up the inverse problem in section 3.2. Stability with respect to ε will be discussed
in section 3.3.

3.1. Fokker–Planck limit. The equation, in the zero limit of ε, loses the large-
angle scattering and effectively is equivalent to the Fokker–Planck equation. The
original derivation was seen in [28, 24]. Denote µ = v · v′ the cosine of the scattering
angle; then the scattering cross section has the Legendre polynomial expansion,

1

ε
σ

(
1− µ
ε

)
=
∞∑
n=0

2n+ 1

4π
σnPn(µ) ,
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STABILITY OF INVERSE TRANSPORT EQUATION 2639

where the projection coefficients on the nth Legendre polynomial Pn(µ) are

σn =
2π

ε

∫ 1

−1

σ

(
1− µ
ε

)
Pn(µ)dµ .(3.4)

It is immediate that σ0 = 1 from (3.3).
To proceed, we write v using spherical coordinates, v = (

√
1− v2

3 cosψ,√
1− v2

3 sinψ, v3), and introduce the spherical harmonic functions

Yn,m(v)=

[
2n+1

4π

(n−|m|)!
(n+|m|)!

]1/2

× (−1)(m+|m|)/2Pn,|m|(v3)einψ , n ≥ 0, − n ≤ m ≤ n ,

where Pn,|m|(v3) are associated Legendre functions

Pn,|m|(v3) = (1− v2
3)m/2

(
d

dv3

)m
Pn(v3), 0 ≤ m ≤ n .

The spherical harmonic functions form a complete set of orthonormal basis and thus
any suitably smooth function f(v) defined on the unit sphere can be expanded as

f(v) =
∞∑
n=0

n∑
m=−n

fn,mYn,m(v), fn,m :=

∫
S2

f(v)Yn,m(v)dv .(3.5)

Note also that Pn(µ) satisfy the addition formula:

Pn(v · v′) =
4π

2n+ 1

n∑
m=−n

Yn,m(v)Yn,m(v′) .

Therefore, the collision (3.2) admits the following expansion:

Lf =
1

ε

∞∑
n=0

n∑
m=−n

σn

∫
S2

Yn,m(v)Yn,m(v′) [f(v′)− f(v)] dv′

=
1

ε

[ ∞∑
n=0

n∑
m=−n

σnfn,mYn,m(v)− σ0f(v)

]

=
1

ε

∞∑
n=0

n∑
m=−n

(σn − σ0)fn,mYn,m(v) .(3.6)

The second equality holds because
∫
S2 Yn,mdv = 0 for all n ≥ 1 and

∫
S2 Yn,mdv = 1

only if n = m = 0. Letting α = 1−µ
ε , we rewrite σn in (3.4) as

σn = 2π

∫ 2/ε

0

σ(α)Pn(1− εα)dα

= 2π

∫ 2/ε

0

σ(α)

[
Pn(1)− P ′n(1)εα+

P ′′n (1)

2
(εα)2 + · · ·

]
dα .(3.7)

If we define

ξn := 2π

∫ 1

−1

1

ε2
σ

(
1− µ
ε

)
(1− µ)ndµ

= εn−1

(
2π

∫ 2/ε

0

tnσ(t)dt

)
= O(εn−1) ,

(3.8)
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then σn can be rewritten as

σn = ε

[
Pn(1)ξ0 + P ′n(1)ξ1 +

1

2
P ′′n (1)ξ2 +

1

3!
P ′′′n (1)ξ3 + · · ·

]
.(3.9)

Note that ξ0 is fixed and has no dependence on σ due to (3.3):

ξ0 = 2π

∫ 1

−1

1

ε2
σ

(
1− µ
ε

)
dµ =

2π

ε
.(3.10)

Since

Pn(1) = 1, P ′n(1) =
n(n+ 1)

2
, P0(µ) = 1 ,

we have from (3.7) that

σn − σ0 = −εn(n+ 1)

2
ξ1 +O(ε2) ,

and therefore plugging it into (3.6) we get

Lf =

∞∑
n=0

n∑
m=−n

−n(n+ 1)

2
ξ1fn,mYn,m +O(ε) .(3.11)

Recall that for the well-known Fokker–Planck operator in spherical coordinates,

LFPf(v) =

[
∂

∂v3
(1− v2

3)
∂

∂v3
+

1

1− v2
3

∂2

∂ψ2

]
f(v) ,

we have

LFPYn,m(v) = −n(n+ 1)Yn,m(v) .(3.12)

Comparing (3.11) and (3.12), we get the Fokker–Planck approximation:

Lf(v) =

∞∑
n=0

n∑
m=−n

−
(
n(n+ 1)

2
ξ1 +O(ε)

)
fn,mYn,m =

ξ1
2
LFPf(v) +O(ε)

with

ξ1 = 2π

∫ 2/ε

0

tσ(t)dt ∼ 2π

∫ ∞
0

tσ(t)dt .(3.13)

In other words, when ε is small, the linear scattering operator L converges to the
Fokker–Planck operator with a scalar multiplication and the linear transport equation
converges to the Fokker–Planck equation

∂tf + v · ∇xf =
ξ1
2
LFPf ,

where LFP and ξ1 are defined in (3.12) and (3.13), respectively.

Remark 3.1. We note that the unknown in the collision term defined in (3.2) is
σ(µ). As a function of µ, it could be fully recovered only if all the coefficients σn
in (3.4) are known. According to (3.9), this requires knowledge about ξn for all n.
However, in the zero limit, the collision term converges to the Laplace operator, and
there is only one scalar that is unknown: ξ1. As a result, the limiting Fokker–Planck
equation is much easier to invert heuristically. This will be reflected in section 3.3.
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3.2. Inverse problem setup. In the inverse problem setting, we are given
inflow data and measure the outflow, with which we infer the scattering coefficient
σ(v, v′). Here the albedo operator is given by

A(σ) : φ(t, x, v)|(0,T )×Γ− →
∫

Γ+(y)

f(t, y, v)n(y) · vdv .

We first linearize the albedo operator. Like always, we assume that a priori
knowledge provides a background state σ0 such that the residue σ̃ := σ − σ0 satisfies

|σ̃| � |σ| , a.e.;

then with background state σ0, one gets the solution f0 that solves the following initial
boundary value problem:

∂tf0(t, x, v) + v · ∇xf0(t, x, v) = L0f0(t, x, v) ,

f0(0, x, v) = 0 on Ω× S2 ,

f0(t, x, v) = φ(t, x, v) on (0, T )× Γ− ,

(3.14)

where

L0f0(t, x, v) =
1

ε2

∫
4π

σ0

(
1− µ
ε

)
(f0(t, x, v′)− f0(t, x, v))dv′ .

The residue
f̃(t, x, v) := f(t, x, v)− f0(t, x, v)

then satisfies

∂tf̃(t, x, v) + v · ∇xf̃(t, x, v) = L0f̃(t, x, v) + L̃f0(t, x, v)(3.15)

with zero initial data and boundary data. Here

L̃f0(t, x, v) =
1

ε2

∫
4π

σ̃

(
1− µ
ε

)
(f0(t, x, v′)− f0(t, x, v))dv′ .(3.16)

We also define an adjoint problem to (3.14):
−∂tg(t, x, v)− v · ∇xg(t, x, v) = L0g(t, x, v) ,

g(T, x, v) = 0 on Ω× S2 ,

g(t, x, v) = δ(τ, y) on (0, T )× Γ+ .

(3.17)

Multiply (3.15) and (3.17) by g and f̃ , respectively, and subtract them; we get, after
integrating in x, v, and t,∫

Γ+(y)

f̃(τ, y, v)n(y) · vdv =

∫
Ω×S2

∫ T

0

g(t, x, v)L̃f0(t, x, v)dtdvdx ,(3.18)

where the LHS is the difference between the measurement of f(t, x, v) and the com-
puted f0(t, x, v) at time τ and position y ∈ ∂Ω, and we denote it by b(τ, y, φ),

b(τ, y, φ) =

∫
Γ+(y)

f̃(τ, y, v)n(y) · vdv .
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The RHS of (3.18) gives a linear function for σ̃. In particular, using (3.16) we have

b(τ, y, φ) =
1

ε2

∫
S2×S2

σ̃

(
1− µ
ε

)
γε(v, v

′)dv′dv ,(3.19)

where

γε(v, v
′; τ, y, φ) :=

∫ T

0

∫
Ω

g(t, x, v)[f0(t, x, v′)− f0(t, x, v)]dxdt .(3.20)

By varying {τ, y} and φ, one obtains different g and f0, and thus γε, making (3.19) a
Fredholm operator of the first kind with parameters {τ, y, φ}.

As mentioned in Remark 2.3, to have a unique recovery of σ̃ in Lp space, one
needs γε expanding the adjoint space Lq (with 1

p + 1
q = 1). The injectivity is beyond

the scope of the current paper, and we only discuss the stability in the following
section.

3.3. Stability in the highly forward peaked regime. This subsection is
devoted to the stability in the recovery of σ in the forward peaked regime. There are
two aspects of the problem:

1. To fully recover σ(1 − v · v′), as mentioned in Remark 3.1, one needs all its
moments σn, which in turn requires the information of ξn for all n. However,
since ξn diminishes at the order of εn−1, obtaining ξn is very sensitive to
the pollution in the data. Indeed, suppose the data has pollution of order
δ; then there are at most n0 = logε δ + 1 terms that can be recovered. Now
keeping δ fixed and sending ε to 0, the number n0 decreases to 1, meaning
that all the higher order information gets lost. This is indeed consistent
with the view of the singular decomposition [17, 5]. In that viewpoint, the
reconstruction of σ relies on the separation of the ballistic component (pure
transport) and the scattered components (mainly the single-scattering). In
the forward peaked regime, however, the single-scattering concentrates on the
original velocity and does not distinguish from the ballistic transport much,
making the separation hard, and thus disables the reconstruction. This will
be demonstrated in Theorem 3.3.

2. Nevertheless, in the Fokker–Planck regime, it’s not the full information
σ(1− v · v′) that matters but the rescaled one 1

εσ( 1−v·v′
ε ). As written, when

ε is small, the rescaled σ will concentrate around v · v′ = 1 and only a little
information is needed to recover its shape. Indeed, according to (3.7), (3.8),
and (3.9), ξn quickly decays to zero, and all of σn are dominated by the first
few ξn for certain accuracy. For example, if ε accuracy is needed for σn, one
only needs to recover one parameter ξ1. This significantly reduces the amount
of measurements needed. In this sense, we find that the inverse problem with
highly forward peaked scattering is actually more practice friendly. This is
demonstrated in Theorem 3.2.

To recover 1
ε σ̃s(

1−v·v′
ε ), one simply needs to find all its Legendre coefficients σ̃n

in the expansion

1

ε
σ̃

(
1− v · v′

ε

)
=
∞∑
n=0

2n+ 1

4π
σ̃nPn(µ) , µ = v · v′ .(3.21)

Using the same expression as in (3.9), one has

σ̃n = ε

[
Pn(1)ξ̃0 + P ′n(1)ξ̃1 +

1

2
P ′′n (1)ξ̃2 +

1

3!
P ′′′n (1)ξ̃3 + · · ·

]
(3.22)
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STABILITY OF INVERSE TRANSPORT EQUATION 2643

with

ξ̃n = εn−12π

∫ ε/2

0

tnσ̃s(t)dt = O(εn−1) .(3.23)

Introducing the above relations into (3.19), we get

b(τ, y, φ) =
1

ε

∞∑
n=0

σ̃sn

∫
S2

Pn(µ)γε(v, v
′)dvdv′

=
∞∑
n=0

∞∑
j=0

ξjP
(j)
n (1)

1

j!

∫
S2

Pn(µ)γε(v, v
′)dvdv′

=
∞∑
j=0

ξj

(
1

j!

∞∑
n=0

P (j)
n (1)

∫
S2

Pn(µ)γε(v, v
′)dvdv′

)
.

Consequently, we obtain the following linear system for ξ = (ξ1, ξ2, · · · ):

Aξ = b ,(3.24)

where b is a column vector whose size is equal to the number of experiments, and in
matrix A = [aij ], the component aij is determined by

aij =
1

j!

∞∑
n=0

P (j)
n (1)

∫
S2

Pn(µ)γε(v, v
′)dvdv′ ,

where the subscript i represent experiment i with choice τi, yi, φi. Recalling the
expression of γε in (3.20), one has∫

S2

Pn(µ)γε(v, v
′)dvdv′ =

4π

2n+ 1

n∑
m=−n

∫
Yn,m(v)Yn,m(v′)γε(v, v

′)dvdv′

=
4π

2n+ 1

n∑
m=−n

∫
Yn,m(v)Yn,m(v′)

×
[∫

g(v)f0(v′)− g(v)f0(v)dxdt

]
dvdv′

=
4π

2n+ 1

n∑
m=−n

[
ḡn,m(f0)n,m − (gf0)n,mδn,m

]
,

where the over-line denotes integration in both x and t. Therefore,

aij =
∞∑
n=0

P
(j)
n

j!

4π

2n+ 1

n∑
m=−n

[
ḡn,m(f0)n,m − (gf0)n,mδn,m

]
.(3.25)

Theorem 3.2. The recovery of 1
ε σ̃
(

1−µ
ε

)
does not deteriorate as ε → 0. More

precisely, if we define the distinguishability coefficient as

κε = sup
σ̂∈Γδ

‖ 1
ε σ̂
(

1−µ
ε

)
− 1

ε σ̃
(

1−µ
ε

)
‖∞∥∥ 1

ε σ̃
(

1−µ
ε

)∥∥
∞

,(3.26)
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where

Γδ =


1

ε
σ̂

(
1− µ
ε

)
: sup
∀‖φ‖L∞(Γ−)≤1,

∀y∈∂Ω, τ∈[0,T ]

∣∣∣∣1ε
∫

×
[

1

ε
σ̂

(
1− µ
ε

)
− 1

ε
σ̃

(
1− µ
ε

)]
γε(v, v

′; τ, y, φ)dvdv′
∣∣∣∣ ≤ δ} ,

then for ε� δ
κε ∼ O(δε) .

Proof. From (3.21)–(3.23), we see that

1

ε
σ̃

(
1− µ
ε

)
= ε

∞∑
k=0

[ ∞∑
n=0

2n+ 1

4π
Pn(µ)

P
(k)
n (1)

k!

]
ξ̃k := ε

∞∑
k=0

hk(µ)ξ̃k ,

where ξ̃k is defined the same as in (3.23). Similarly, 1
εσ
(

1−µ
ε

)
has the expansion

1

ε
σ

(
1− µ
ε

)
= ε

∞∑
k=0

hk(µ)ξk .

Note first that ξ̃0 = ξ0; then for 1
εσ( 1−µ

ε ) ∈ Γδ, we have∣∣∣∣1ε
∫ [

1

ε
σ

(
1− µ
ε

)
− 1

ε
σ̃

(
1− µ
ε

)]
γε(v, v

′; τ, y, φ)dvdv′
∣∣∣∣

=

∣∣∣∣∣
∞∑
k=1

∫
hk(µ)(ξk − ξ̃k)γεdvdv′

∣∣∣∣∣
=

∣∣∣∣∫ h1(µ)(ξ1 − ξ̃1)γεdvdv′ +O(ε)

∣∣∣∣ ≤ δ ,
which implies that, for ε� δ, |ξ1 − ξ̃1| ≤ O(δ) since h1(µ) and γε are O(1). Plugging
this result into the definition (3.26), one immediately sees that

κε = sup
σ∈Γδ

(ξ1 − ξ̃1)h1(µ) +O(ε2)

ξ0h0(µ) + ξ1h1(µ) +O(ε2)
∼ O(δε) ,

where ε on the right comes from the fact that ξ0 ∼ O(ε−1).

Contrary to the above result, if we want to fully recover σ, then the presence of
the small scale ε will make it impossible. Specifically, we have the following theorem.

Theorem 3.3. Suppose σ ∈ Hk(dµ) (Hk(dµ) is the Sobolev space of functions
whose derivatives of order up to k-order are in L2(dµ)); the recovering σ becomes
impossible in the limit of ε → 0 in the sense that if the δ error is allowed in b (e.g.,

measurement error; see (3.24)), then the error in σ will be
(

ln ε
ln δ

)k
.

Proof. Since σ(µ) ∈ L2(dµ), we expand it using Hermite functions:

σ =
∑
n

1

n!
σ̂nHn(µ)(3.27)
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STABILITY OF INVERSE TRANSPORT EQUATION 2645

with σ̂n = 〈σ ,Hn〉 =
∫
σHn(µ)dµ. Here Hn are weighted Hermite functions

written as

Hn(µ) = pn(µ)e−µ
2/2 with

∫
pm(µ)pn(µ)e−µ

2

dµ = δmnn! .

Note that other L2 basis functions can be used. The Hermite polynomial is only one
possible choice.

Meanwhile we recall the definition of ξ:

ξm = 2πεm−1

∫ 2/ε

0

σ(µ)µmdµ .

To prove the theorem, we allow ∆ error in σ, and see how much it affects ξ, and
then b in the end. Here ξ = [ξ0, ξ1, · · · ]′ and σ = [σ0, σ1, · · · ]′. We first note that
σ ∈ Hk, and thus its Hermite polynomial coefficients decay algebraically fast. The
standard approximation theory from spectral accuracy indicates

σn = O(1/nk) .

Suppose we tolerate error up to ∆; then one needs to recover σn up to at least
n0 = ∆−1/k, and the allowed perturbation in σn is

∆σn ≤ ∆ for n = 0 , . . . , n0 .

We now look for an explicit relation between ξ and σn. Considering the explicit
relation between monomials and the Hermite polynomials

vm = m!

m/2∑
k=0

1

2kk!(m− 2k)!
pm−2k(v) ,

plugging it back into the equation for ξm, we have

ξm = εm−1

m/2∑
k=0

2πm!

2kk!(m− 2k)!

∫ 2/ε

0

σ(v)pm−2kdv

= εm−1

m/2∑
k=0

∞∑
n=0

2πm!

2kk!(m− 2k)!n!
Dn,m,kσn ,

where we have used expansion in (3.27) and defined Dn,m,k =
∫
pm−2kpne

−v2/2dv .
In a matrix form one has

ξ = C · σ ,

where C is defined by

Cmn = εm−1 2πm!

n!

m/2∑
k=0

Dn,m,k

2kk!(m− 2k)!
.

Since we need to recover σn up to n = n0 = ∆−1/k, and the recovered coefficients
need to be within error tolerance δ, the tolerance for ξn0

then is

∆ξn0
≤ ∆

n0∑
k=0

Cn0,k ∼ εn0−1∆ with n0 = ∆−1/k .
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Noting the relationship between ξ and b in (3.24), we see that the error allowance
on b is εn0−1∆. With shrinking ε, this restriction becomes more and more severe,
making the inverse problem less practical. More specifically if we have δ error in b,
then setting

ε∆
−1/k

∆ ∼ δ

gives ∆ >
(

ln ε
ln δ

)k → ∞ as ε → 0, meaning that the accuracy in recovering σn is lost
and so it is with σ.

Acknowledgment. The second and third authors are grateful for Prof. Kui
Ren’s inspiring discussions.
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